Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We investigated the flow dynamics of tornado-like vortices, examining the influence of swirl ratio, S, defined as the ratio of tangential to radial momentum at the vortex base, on their structural characteristics. Using a combination of particle image velocimetry (PIV) in a custom-built simulator and large-eddy simulations (LES), we analyzed vortex flows at swirl ratios of S=4.66, 1.25, and 0.33. The results demonstrate that vortex flow characteristics strongly depend on S, with improved agreement between experimental and numerical data when employing flow-based swirl ratio definitions. Vortex wandering was quantified in experiments, and corrections were applied to refine tangential and radial velocity profiles. At S=0.33 and 1.25 in experiments and S=1.25 and 4.66 in simulations, the vortex transitioned from a single-celled to a double-celled structure, with further evolution into multi-celled vortices at the highest swirl ratio, substantially modifying circulation patterns. Proper orthogonal decomposition (POD) characterized the coherent structures governing vortex dynamics and their dependence on swirl ratio, revealing distinct physical features associated with each vortex regime.more » « lessFree, publicly-accessible full text available May 1, 2026
-
Small—but finite—fluid inertia can be leveraged to generate steady flows out of liquid vibrations around an immersed interface. In engineering, external high-frequency drivers allow this inertial rectification phenomenon, known as viscous streaming, to be employed in micron-scale devices for precise flow control, particle manipulation, and spatially controlled chemistry. However, beyond artificial settings, streaming has been hypothesized to be accessible by larger-scale biological systems pertaining to lower frequencies. Then millimeter-size organisms that oscillate or pulsate cilia and appendages in the 1 to range may be able to rectify surrounding flows, for feeding or locomotion, removing the need for external actuators, tethers, or tubing. Motivated by this potential for bio-hybrid robotic applications and biophysical exploration, here we demonstrate an living system able to produce streaming flows endogenously, autonomously, and unassisted. Computationally informed, our biological device generates oscillatory flows through the cyclic contractions of an engineered muscle tissue, shaped in the form of a torus and suspended in fluid within a microparticle image velocimetry setup. Flow patterns consistent with streaming simulations are observed for low-frequency muscle contractions , either spontaneous or light-induced, illustrating system autonomy and controllability, respectively. Thus, by connecting tissue engineering with hydrodynamics, this work provides experimental evidence of biologically powered streaming in untethered, millimeter-scale living systems, endowing bio-hybrid technology with inertial microfluidic capabilities. It also illustrates the potential of combining bio-hybrid platforms and simulations to advance both biophysical understanding and fluid mechanics. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available July 1, 2026
-
We explored the settling dynamics of vertically aligned particles in a quiescent, stratified two-layer fluid using particle tracking velocimetry. Glass spheres of$$d=4\,{\rm mm}$$diameter were released at frequencies of 4, 6 and 8 Hz near the free surface, traversing through an upper ethanol layer ($$H_1$$), whereHis height or layer thickess, varying from$$10d$$to$$40d$$and a lower oil layer. Results reveal pronounced lateral particle motion in the ethanol layer, attributed to a higher Galileo number ($$Ga = 976$$, ratio of buoyancy–gravity to viscous effects), compared with the less active behaviour in the oil layer ($$Ga = 16$$). The ensemble vertical velocity of particles exhibited a minimum just past the density interface, becoming more pronounced with increasing$$H_1$$, and suggesting that enhanced entrainment from ethanol to oil resulted in an additional buoyancy force. This produced distinct patterns of particle acceleration near the density interface, which were marked by significant deceleration, indicating substantial resistance to particle motion. An increased drag coefficient occurred for$$H_1/d = 40$$compared with a single particle settling in oil; drag reduced as the particle-release frequency ($$\,f_p$$) increased, likely due to enhanced particle interactions at closer proximity. Particle pair dispersions, lateral ($$R^2_L$$) and vertical ($$R^2_z$$), were modulated by$$H_1$$, initial separation$$r_0$$and$$f_p$$. The$$R^2_L$$dispersion displayed ballistic scaling initially, Taylor scaling for$$r_0 < H_1$$and Richardson scaling for$$r_0 > H_1$$. In contrast,$$R^2_z$$followed a$$R^2_z \sim t^{5.5}$$scaling under$$r_0 < H_1$$. Both$$R^2_L$$and$$R^2_z$$plateaued at a distance from the interface, depending on$$H_1$$and$$f_p$$.more » « less
-
Wheeler, Aaron (Ed.)The ability to measure the charge and size of single particles is essential to understanding particle adhesion and interaction with their environment. Characterizing the physical properties of biological particles, like cells, can be a powerful tool in studying the association between the changes in physical properties and disease development. Currently, measuring charge via the electrophoretic mobility (μep) of individual particles remains challenging, and there is only one prior report of simultaneously measuring μep and size. We introduce microfluidic transverse AC electrophoresis (TrACE), a novel technique that combines particle tracking velocimetry (PTV) and AC electrophoresis. In TrACE, electric waves with 0.75 to 1.5 V amplitude are applied transversely to the bulk flow and cause the particles to oscillate. PTV records the particles' oscillating trajectories as pressure drives bulk flow through the microchannel. A simple quasi-equilibrium model agrees well with experimental measurements of frequency, amplitude, and phase, indicating that particle motion is largely described by DC electrophoresis. The measured μep of polystyrene particles (0.53, 0.84, 1, and 2 μm diameter) are consistent with ELS measurements, and precision is enhanced by averaging ∼100 measurements per particle. Particle size is simultaneously measured from Brownian motion quantified from the trajectory for particles <2 μm or image analysis for particles ≥2 μm. Lastly, the ability to analyze intact mammalian cells is demonstrated with B cells. TrACE systems are expected to be highly suitable as fieldable tools to measure the μep and size of a broad range of individual particles.more » « less
-
We experimentally explored the effect of single-sidewall cooling on Rayleigh–Bénard (RB) convection. Canonical RB was also studied to aid insight. The scenarios shared tank dimensions and bottom and top wall temperatures; the single sidewall cooling had the top wall temperature. Turbulence was explored at two canonical Rayleigh numbers, $$Ra=1.6\times 10^{10}$$ and $$Ra=2\times 10^9$$ under Prandtl number $Pr=5.4$ . Particle image velocimetry described vertical planes parallel and perpendicular to the sidewall cooling. The two $Ra$ scenarios reveal pronounced changes in the flow structure and large-scale circulation (LSC) due to the sidewall cooling. The density gradient induced by the sidewall cooling led to asymmetric descending and ascending flows and irregular LSC. Flow statistics departed from the canonical case, exhibiting lower buoyancy effects, represented by an effective Rayleigh number with effective height dependent on the distance from the lateral cooling. Velocity spectra show two scalings, $$\varPhi \propto f^{-5/3}$$ Kolmogorov (KO41) and $$\varPhi \propto f^{-11/5}$$ Bolgiano (BO59) in the larger $Ra$ ; the latter was not present in the smaller set-up. The BO59 scaling with sidewall cooling appears at higher frequencies than its canonical counterpart, suggesting weaker buoyancy effects. The LSC core motions allowed us to identify a characteristic time scale of the order of vortex turnover time associated with distinct vortex modes. The velocity spectra of the vortex core oscillation along its principal axis showed a scaling of $$\varPhi _c \propto f^{-5/3}$$ for the single sidewall cooling, which was dominant closer there. It did not occur in the canonical case, evidencing the modulation of LSC oscillation on the flow.more » « less
-
Abstract Mammals have presumably evolved to adapt to a diverse range of ambient environmental conditions through the optimized heat and mass exchange. One of the crucial biological structures for survivability is the nose, which efficiently transports and thermally preconditions the external air before reaching the internal body. Nasal mucosa and cavity help warm and humidify the inhaled air quickly. Despite its crucial role, the morphological features of mammal noses and their effect in modulating the momentum of the inhaled air, heat transfer dynamics, and particulate trapping remain poorly understood. Tortuosity of the nasal cavity in high-olfactory mammalian species, such as pigs and opossum, facilitates the formation of complex airflow patterns inside the nasal cavity, which leads to the screening of particulates from the inhaled air. We explored basic nasal features in anatomically realistic nasal pathways, including tortuosity, radius of curvature, and gap thickness; they show strong power-law correlations with body weight. Complementary inspection of tortuosity with idealized conduits reveals that this quantity is central in particle capture efficiency. Mechanistic insights into such nuances can serve as a tipping point to transforming nature-based designs into practical applications. In-depth characterization of the fluid–particle interactions in nasal cavities is necessary to uncover nose mechanistic functionalities. It is instrumental in developing new devices and filters in a number of engineering processes.more » « less
-
High-resolution large eddy simulations and complementary laboratory experiments using particle image velocimetry were performed to provide a detailed quantitative assessment of flow response to gaps in cylinder arrays. The base canopy consists of a dense array of emergent rigid cylinders placed in a regular staggered pattern. The gaps varied in length from [Formula: see text] to 24, in intervals of 4 d, where d is the diameter of the cylinders. The analysis was performed under subcritical conditions with Froude numbers [Formula: see text] and bulk Reynolds numbers [Formula: see text]. Results show that the gaps affect the flow statistics at the upstream and downstream proximity of the canopy. The affected zone was [Formula: see text] for the mean flow and [Formula: see text] for the second-order statistics. Dimensionless time-averaged streamwise velocity within the gap exhibited minor variability with gap spacing; however, in-plane turbulent kinetic energy, k, showed a consistent decay rate when normalized with that at [Formula: see text] from the beginning of the gap. The emergent canopy acts as a passive turbulence generator for the gap flow for practical purposes. The streamwise dependence of k follows an exponential trend within [Formula: see text] and transitions to a power-law at [Formula: see text]. The substantially lower maximum values of k within the gap compared to k within the canopy evidence a limitation of gap measurements representative of canopy flow statistics. We present a base framework for estimating representative in-canopy statistics from measurements in the gap.more » « less
-
Passive filtering is a common strategy to reduce airborne disease transmission and particulate contaminants across scales spanning orders of magnitude. The engineering of high-performance filters with relatively low flow resistance but high virus- or particle-blocking efficiency is a non-trivial problem of paramount relevance, as evidenced in the variety of industrial filtration systems and face masks. Next-generation industrial filters and masks should retain sufficiently small droplets and aerosols while having low resistance. We introduce a novel 3D-printable particle filter inspired by animals’ complex nasal anatomy. Unlike standard random-media-based filters, the proposed concept relies on equally spaced channels with tortuous airflow paths. These two strategies induce distinct effects: a reduced resistance and a high likelihood of particle trapping by altering their trajectories with tortuous paths and induced local flow instability. The structures are tested for pressure drop and particle filtering efficiency over different airflow rates. We have also cross-validated the observed efficiency through numerical simulations. We found that the designed filters exhibit a lower pressure drop, compared to commercial masks and filters, while capturing particles bigger than approximately 10 μm. Our findings could facilitate a novel and scalable filter concept inspired by animal noses.more » « less
An official website of the United States government
